QCD, electroweak physics, and searches for exotic signatures in the forward region at LHCb

Carlos Vázquez Sierra (USC/IGFAE) on behalf of the LHCb Collaboration

> 26th March, 2023 57th Rencontres de Moriond QCD

IGFAE U

GOBIERNO DE ESPAÑA MINISTEI DE UNIV

> XUNTA DE GALICIA

MINISTERIO DE UNIVERSIDADES

QCD, electroweak physics, and searches for exotic signatures in the forward region at LHCb

Carlos Vázquez Sierra (USC/IGFAE) on behalf of the LHCb Collaboration

26th March, 2023 57th Rencontres de Moriond QCD

IGFAE

MINISTERIO DE UNIVERSIDADES

XUNTA DE GALICIA

IJMP A30 (2015) 1530022

High pT physics at LHCb

"From a heavy flavor physics experiment to a general purpose detector"

Forward acceptance (2<η<5) access **low** and **high** Bjorken-x values:

Test proton structure in regions complementary to other detectors

Phys. Rev. D 93, 074008 (2016)

Electroweak and QCD measurements

• Forward Z boson production: <u>JHEP 07 (2022) 026</u>

- Precision tests in NNLO pQCD similar to experimental results,
- High (up to ~0.8) and low (~ 5 x 10^{-5}) Bjorken-x regions have limited information,
- LHCb can provide complementary information here, **especially for u/d PDFs at high x.**
- Measurement of Z angular coefficients: <u>Phys. Rev. Lett. 129 (2022) 091801</u>
 - Measure the angular coefficients of the final state muons in Drell-Yan production,
 - Access the **polarization of the intermediate gauge boson** to study underlying QCD.

Charged hadron distributions in Z-tagged jets: <u>arXiv:2208.11691</u>

- **First measurement** of jet fragmentation functions (JFFs) for **identified charged hadrons** produced in association with a Z boson in the forward region.
- Z production in association with charm: Phys. Rev. Lett. 128 (2022) 082001
 - Proton wave function may contain an intrinsic charm (IC) component,
 - Presence of IC would alter the rate and kinematics of c-hadrons (x-sections, astrophysics),
 - IC can be measured in Z+c events in the forward region.

Forward Z boson production

Measure production Z cross-section at LHCb \rightarrow sensitive to PDFs in low/high x. Integrated and differential (function of y^Z, p_T^Z, ϕ_n^*) cross-sections are measured:

Forward Z boson production

Measurement of Z angular coefficients

Direct probe of the polarization of the intermediate gauge boson to test QCD Measure the **polarization fractions** of final state leptons in pp $\rightarrow \gamma^*/Z \rightarrow \mu\mu + X$

Measurement of Z angular coefficients

Small high p_T (>50 GeV) data sample allows to fix A_{5-7} to zero.

Similar dataset to the Z x-section measurement but with **much lower background contamination** (0.2%). **Analysis statistically dominated.**

Agreement with most of the predictions (exc. Pythia8).

Lam-Tung violation present as well, in agreement with <u>ATLAS</u> and <u>CMS</u>.

Measurement of Z angular coefficients

Multiple mass regions studied (dominated by γ* and interference with Z), sensitive to the evolution of TMD Boer-Mulders PDF with the hard scale.

Significant deviations in the lowest pT region from all predictions. **Non-perturbative spin-momentum correlations not included in any of the predictions.**

 $-qg \rightarrow Zq$

Charged hadron distributions in Z-tagged jets

First measurement of jet fragmentation functions (JFFs) for **identified charged hadrons** produced in association with a Z boson in the forward region.

Z+j production in LHCb **dominated** by $qg \rightarrow$ Zq, providing **sensitivity** to quark TMD FFs.

JFFs measured in Z-tagged j as a function of \mathbf{z} and \mathbf{j}_{T}

Partonic fraction

0.7

0.6

PYTHIA 8.2

√s = 13 TeV Forward Z+iet

Charged hadron distributions in Z-tagged jets

PID efficiency (h[±]) determined in intervals of p_T , η and track multiplicity. **Impurity** of the h[±] sample (mis-identified K, p and π) **less than 5%.**

Charged hadron distributions in Z-tagged jets

Predictions generated with Pythia 8.186 + CT09MCS PDF:

Data can be used to tune MC generators for production of identified h^{\pm}

Z boson production in association with charm

Probe IC by studying Z+c events in the forward pp region.

IC would produce an **enhancement** in the R_i^c ratio for large y(Z) values, in NLO:

Z boson production in association with charm

Jet flavours separated with Displaced Vertex (DV) tagger (function of number of tracks and corrected mass).

Corrected mass \rightarrow minimum mass the long-lived hadron can have consistent with the flight direction.

Systematic uncertainty dominated by **limited knowledge of c-tagging efficiency**.

Z boson production in association with charm

Sizable enhancement is observed in the forward-most y(Z) bin.

Ratio of observed to no-IC-expected values is 1.85 ± 0.25 .

Evidence of IC with 3σ using LHCb data from NNPDF collaboration Nature 608, 483–487 (2022)

Summary

LHCb has an <u>extensive EW and QCD physics program</u>, which can help to **study complementary Bjorken-x regions to other central experiments**, **tune MC generators**, and **constrain PDFs**.

EW measurements with the full Run 2 datasets and complementary final states in preparation.

Searches for exotic signatures not covered in this talk \rightarrow analyses still not complete but almost ready, stay tuned for Summer conferences!

Thanks for your attention

HCb

Backup

- Jet reconstruction: [JHEP (2014) 01 033]
 - Particle flow algorithm (including neutral recovery) \rightarrow jet input.
 - Anti- k_T algorithm for clustering (R = 0.5) \rightarrow efficiency > 95% for p_T > 20 GeV.
 - Jet energy scale calibrated on data (using $Z \rightarrow \mu \mu$ + jets),
 - Energy resolution from 10 to 15% for a p_T range between 10 and 100 GeV.
- Secondary Vertex (SV) identification and jet tagging: [JINST 10 (2015) P06013]
 - Reconstruct SV from displaced tracks \rightarrow kinematic and quality requirements on both,
 - Train two Boosted Decision Trees (BDTs) for a two-step jet flavour tagging:
 - SV displacement from PV, kinematics, charge and multiplicity;
 - SV corrected mass, defined as $M_{corr}(SV) = \sqrt{M^2 + p^2 \sin^2 \theta} + p \sin \theta$.
 - BDT(bc|udsg) to separate light and heavy flavour jets, BDT(b|c) to separate b from c-jets.
 - Tagging efficiency of b(c)-jets of 65% (25%) with 0.3% contamination from light jets.

Corrected mass approach:

- LHCb is a non-hermetic spectrometer \rightarrow we can not do invisibles.
- However, we can compute a proxy to X+invisible invariant mass \rightarrow corrected mass.
- Required to have only one massless invisible in the final state (ν) .
- Required to know the direction of flight of the parent particle.

Assume LLP origin vertex approximately be the same as the pp collision.

Obtain a (pseudo) decay vertex using the di-lepton systems.

Operation of Project the di-lepton system momenta to the LLP direction of flight.

$$m_{\rm corr} = \sqrt{m(e\mu)^2 + p(e\mu)^2 \sin^2 \theta} + p(e\mu) \sin \theta$$

Corrected mass as a good proxy to real mass \rightarrow discriminating variable.

*m*_W Measurement

• m_W is directly related to electroweak symmetry breaking in the standard model

$$m_W^2 = \frac{\pi \alpha}{\sqrt{2}G_F (1 - m_W^2 / m_Z^2)(1 - \Delta r)}$$

 Δr : loop corrections

 Uncertainty from PDFs at LHCb is anticorrelated to that of ATLAS/CMS ⇒ LHC experiments can achieve a sensitivity closer to the global EW fit (~7 MeV)

*m*_W: Physics & Detector Modelling

- Measurements based on charged lepton p_T
- m_W determination is highly sensitive to misalignments and miscalibrations of the detector

m_W at LHCb

• p_T^{μ} peaks at $\sim m_W/2$, extract m_W in a template fit to the q/p_T^{μ} distribution

m_W : Uncertainties

	JHEP 01 (2022) 03	<u>6</u>
Source	Size (MeV)	
Parton distribution functions	9	\rightarrow average of NNPDF31, CT18 and MSHT20
Total theoretical syst. uncertainty (excluding PDFs)	17	
Transverse momentum model	11	→ from five different models
Angular coefficients	10	\rightarrow scale variation
QED FSR model	7	\rightarrow envelope of the QED FSR from PYTHIA8 Photos and
Additional electroweak corrections	5	Herweig
Total experimental syst. uncertainty	10	
Momentum scale and resolution modelling	7	
Muon ID, tracking and trigger efficiencies	6	\rightarrow statistical uncertainties, details of method (e.g.
Isolation efficiency	4	binning, smoothing)
QCD background	2	
Statistical	23	
Total uncertainty	32	

m_W: Result

$m_W = 80354 \pm 23_{\text{stat.}} \pm 10_{\text{exp.}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

- LHCb achieves a precision of ~ 32 MeV using roughly 1/3 of the Run-II dataset
- Further ~4 fb⁻¹ of Run-II data to add → statistical uncertainties ≈ 14 MeV
- Effort now on improving the modelling and reducing the systematic uncertainties
- An overall precision ~ 20 MeV is achievable with all existing LHCb data

